Lesson 10. Drafting a Fantasy Basketball Team

The problem

You're preparing for your upcoming fantasy basketball draft. You wonder: what is the best possible team you can draft? You have the following data:

- Projected auction prices for each player in the NBA.
- The z-score for each player: the sum of the number of standard deviations above the mean in the following 9 categories:

1. points per 36 minutes
2. 3 point field goals made per 36 minutes
3. number of rebounds per 36 minutes
4. number of assists per 36 minutes
5. number of steals per 36 minutes
6. number of blocks per 36 minutes
7. negative of the number of turnovers per 36 minutes
8. field goal percentage
9. free throw percentage

Your roster must have exactly 12 players, and you have a budget of $\$ 50$. You want to maximize the total z-score of your team.

Formulate this problem as a dynamic program by giving its shortest/longest path representation.

Setting up the data

- In the same folder as this notebook, there is a file called fantasy_basketball_nba2017.csv with the data described above.
- The z-scores were computed using projected stats from Basketball Reference.
- Projected auction prices were taken from Yahoo! Fantasy Sports, normalized to a budget of \$50.
- Let's take a look using pandas. First, let's import pandas:

```
In [2]: # Import pandas
    import pandas as pd
```

- Now we can read the csv file into a pandas DataFrame and inspect the first few rows:

```
In [3]: # Read csv file with data
    df = pd.read_csv('fantasy_basketball_nba2017.csv')
    # Print the first 5 rows of df
    df.head()
```

| Out[3]: | | PLAYER | TEAM | POSITIONS | ZSCORE |
| ---: | ---: | ---: | ---: | ---: | ---: | PRICE

- As we can see, the data also contains the team and positions for each player.
- Next, let's create some lists that correspond to the relevant columns of the dataset.
- Recall that we can grab a column from a DataFrame like this:

```
df['COLUMN_NAME']
```

- The list() function turns any list-like object (such as a column of a pandas DataFrame) into a Python list.
- We can apply the .str.split(", ") method to convert a comma-delimited string into a list. This will be helpful in parsing the positions that a player can play, since many players can play multiple positions.

```
In [4]: # Create a list of players
    players = list(df["PLAYER"])
    # Create a list of zscores
    zscores = list(df["ZSCORE"])
    # Create a list of prices
    prices = list(df["PRICE"])
    # Create a list of positions
    positions = list(df["POSITIONS"].str.split(","))
```

- Now we can look at player t and his associated data like this:

```
In [5]: # Print out information about player 3 - Anthony Davis
    print(players[3])
    print(zscores[3])
    print(prices[3])
    print(positions[3])
Anthony Davis
8.357714143615143
15
['PF', 'C']
```

- Let's also create a variable that holds the number of players:

```
In [6]: # Create a variable for the number of players
    n_players = len(players)
```

- Now we can use these lists and variables to construct the graph for the dynamic program.

Solving the DP

- There are two important constants in our problem: the budget, and the roster size.
- Let's create variables to hold these constants.
- This way, we can easily adapt our code to accomodate similar DPs with different budgets and roster sizes.

```
In [7]: # Create variables to hold constants: budget, roster size
    BUDGET = 50
    ROSTER_SIZE = 12
```

- Next, let's import networkx and bellmanford:

In [8]: \# Import networkx and bellman ford
import networkx as $n x$
import bellmanford as bf

- As usual, we start with an empty graph:

```
In [9]: # Create empty digraph
    G = nx.DiGraph()
```

- Next, let's add the nodes:

In [10]: \# Add stage-state nodes (t, n1, n2)
for t in range ($\left.0, ~ n _p l a y e r s+1\right):$
for $n 1$ in range (0, BUDGET +1):
for $n 2$ in range (0, ROSTER_SIZE + 1):
G.add_node((t, n1, n2))
\# Add the end node
G.add_node("end")

- How many nodes do we have in our graph?

In [11]: \# Print number of nodes in digraph print(G.number_of_nodes())

293710

- Now it's time to add the edges.
- Let's start with the edges corresponding to the decision of whether to take a player or not:

```
In [12]: # Add edges corresponding to the decision of whether to take a player or not
    for t in range(0, n_players):
        for n1 in range(0, BUDGET + 1):
            for n2 in range(0, ROSTER_SIZE + 1):
            # Don't take the player
            G.add_edge((t, n1, n2), (t + 1, n1, n2), length=0)
            # Take the player if there's enough left in the budget
            # and there are enough roster spots
            if n1 - prices[t] >= 0:
```

```
            if n2 - 1 >= 0:
    G.add_edge((t, n1, n2), (t + 1, n1 - prices[t], n2 - 1),
length=-zscores[t])
```

- Now we can add the edges from the last stage to the end node. Remember to only add edges from the last stage if the number of remaining roster spots n_{2} is equal to 0 !

In [13]:

```
# Add edges from last stage to end,
    # only when number of remaining roster spots is 0
    for n1 in range(0, BUDGET + 1):
        G.add_edge((n_players, n1, 0), "end", length=0)
```

- How many edges do we have in our graph?

In [14]: \# Print number of edges
print(G.number_of_edges())

550545

- Finally, let's solve the shortest path problem we've constructed using the Bellman-Ford algorithm:

In [15]:

```
# Solve the shortest path problem using the Bellman-Ford algorithm
    length, nodes, negative_cycle = bf.bellman_ford(G, source=(0, BUDGET, ROSTER_SIZE),
    target="end",
```

 weight="length")
 print("Negative cycle? \{0\}".format(negative_cycle))
 print("Shortest path length: \{0\}".format(length))
 print("Shortest path: \{0\}".format(nodes))
 Negative cycle? False
Shortest path length: -57.45369330886113
Shortest path: $[(0,50,12),(1,32,11),(2,32,11),(3,32,11),(4,32,11),(5,32$, $11),(6,32,11),(7,32,11),(8,32,11),(9,23,10),(10,15,9),(11,15,9),(12$, $14,8),(13,14,8),(14,14,8),(15,14,8),(16,14,8),(17,14,8),(18,13,7),(19$, $13,7),(20,13,7),(21,13,7),(22,13,7),(23,13,7),(24,12,6),(25,9,5),(26$, $9,5),(27,9,5),(28,5,4),(29,5,4),(30,5,4),(31,5,4),(32,5,4),(33,5,4)$, $(34,5,4),(35,5,4),(36,5,4),(37,5,4),(38,5,4),(39,5,4),(40,5,4),(41$, $3,3),(42,3,3),(43,3,3),(44,3,3),(45,3,3),(46,3,3),(47,3,3),(48,2,2)$, $(49,2,2),(50,2,2),(51,2,2),(52,1,1),(53,0,0),(54,0,0),(55,0,0),(56$, $0,0),(57,0,0),(58,0,0),(59,0,0),(60,0,0),(61,0,0),(62,0,0),(63,0,0)$, $(64,0,0),(65,0,0),(66,0,0),(67,0,0),(68,0,0),(69,0,0),(70,0,0),(71$, $0,0),(72,0,0),(73,0,0),(74,0,0),(75,0,0),(76,0,0),(77,0,0),(78,0,0)$, ($79,0,0$), ($80,0,0),(81,0,0),(82,0,0),(83,0,0),(84,0,0),(85,0,0),(86$, $0,0),(87,0,0),(88,0,0),(89,0,0),(90,0,0),(91,0,0),(92,0,0),(93,0,0)$, ($94,0,0),(95,0,0),(96,0,0),(97,0,0),(98,0,0),(99,0,0),(100,0,0),(101$, $0,0),(102,0,0),(103,0,0),(104,0,0),(105,0,0),(106,0,0),(107,0,0),(108$, $0,0),(109,0,0),(110,0,0),(111,0,0),(112,0,0),(113,0,0),(114,0,0),(115$, $0,0),(116,0,0),(117,0,0),(118,0,0),(119,0,0),(120,0,0),(121,0,0),(122$, $0,0),(123,0,0),(124,0,0),(125,0,0),(126,0,0),(127,0,0),(128,0,0),(129$, $0,0),(130,0,0),(131,0,0),(132,0,0),(133,0,0),(134,0,0),(135,0,0),(136$, $0,0),(137,0,0),(138,0,0),(139,0,0),(140,0,0),(141,0,0),(142,0,0),(143$, $0,0),(144,0,0),(145,0,0),(146,0,0),(147,0,0),(148,0,0),(149,0,0),(150$, $0,0),(151,0,0),(152,0,0),(153,0,0),(154,0,0),(155,0,0),(156,0,0),(157$,

- It's easy to see what the maximum possible total z -score is... however, which players should we select to get this maximum total z -score?
- Instead of reading through the path of $400+$ nodes to figure out which players to select, let's write some code to do this for us.
- We know that we select a player whenever the number of remaining roster spots n_{2} goes down by 1 from stage to stage. So...

In [16]: \# Print selected players in a more user-friendly format
\# Get number of nodes in shortest path
n_nodes $=$ len(nodes)
\# Go through each node in the shortest path
for i in range(n_nodes - 2):
\# Node in current stage

```
(t, n1, n2) = nodes[i]
# Node in next stage
(next_t, next_n1, next_n2) = nodes[i + 1]
# If n2 isn't the same from one stage to the next, print the player's info
if n2 != next_n2:
    print("Node: {0} Player: {1} Positions: {2}, Price: {3} Z-Score: {4}"
                                    .format(nodes[t], players[t], positions[t], prices[t], zscores[t]))
```

```
Node: (0, 50, 12) Player: Stephen Curry Positions: ['PG', 'SG'], Price: 18 Z-Score:
12.681704920021767
Node: (8, 32, 11) Player: Nikola Jokic Positions: ['PF', 'C'], Price: 9 Z-Score:
6.245534045281088
Node: (9, 23, 10) Player: Klay Thompson Positions: ['SG', 'SF'], Price: 8 Z-Score:
5.781494181785728
Node: (11, 15, 9) Player: Cole Aldrich Positions: ['C'], Price: 1 Z-Score:
5.689641521236912
Node: (17, 14, 8) Player: Boban Marjanovic Positions: ['C'], Price: 1 Z-Score:
4.542112513644865
Node: (23, 13, 7) Player: Brandan Wright Positions: ['PF', 'C'], Price: 1 Z-Score:
4.092581777062199
Node: (24, 12, 6) Player: Jrue Holiday Positions: ['PG'], Price: 3 Z-Score:
4.0156102748746365
Node: (27, 9, 5) Player: Dirk Nowitzki Positions: ['PF', 'C'], Price: 4 Z-Score:
3.798143244965448
Node: (40, 5, 4) Player: Kelly Olynyk Positions: ['C'], Price: 2 Z-Score:
2.9855612991757123
Node: (47, 3, 3) Player: Jeremy Lamb Positions: ['SG', 'SF'], Price: 1 Z-Score:
2.657902391350232
Node: (51, 2, 2) Player: Cameron Payne Positions: ['PG'], Price: 1 Z-Score:
2.487896082671208
Node: (52, 1, 1) Player: Mike Muscala Positions: ['PF', 'C'], Price: 1 Z-Score:
2.47551105679133
```


Incorporating other roster constraints

- Fantasy basketball leagues usually have some roster constraints - in particular, on player positions.
- For example, suppose our roster must have exactly 2 players that can play center (C).
- How can we modify our dynamic program to accomodate this? Write a new dynamic program on paper.
- How do we need to modify the code above to solve the new dynamic program?
- A hint:
- To check if player t can play center, we can write:
if "C" in positions[t]:
- This code does what it looks like: it checks if "C" is in the list of positions positions [t] that player t can play.

```
In [17]: # Create empty digraph
    H = nx.DiGraph()
    # Add stage-state nodes (t, n1, n2, n3)
    # t = player
    # n1 = remaining budget
    # n2 = remaining roster spots
    # n3 = remaining C roster spots
    for t in range(0, n_players):
        for n1 in range(0, BUDGET + 1):
            for n2 in range(0, ROSTER_SIZE + 1):
                for n3 in range(0, 3):
                    G.add_node((t, n1, n2, n3))
    # Add the end node
    H.add_node("end")
    # Add edges corresponding to the decision of whether to take a player or not
    for t in range(0, n_players):
        for n1 in range(0, BUDGET + 1):
            for n2 in range(0, ROSTER_SIZE + 1):
                for n3 in range(0, 3):
                    # Don't take the player
                    H.add_edge((t, n1, n2, n3), (t + 1, n1, n2, n3), length=0)
                    # Take the player if there's enough left in the budget
                    # and there are enough roster spots
                    if n1 - prices[t] >= 0:
                        if n2 - 1 >= 0:
                        # If the player is a center, we can only add this edge if
                # there are enough remaining C roster spots
                if "C" in positions[t]:
                        if n3 - 1 >= 0:
                        H.add_edge((t, n1, n2, n3),
                                    (t + 1, n1 - prices[t], n2 - 1, n3 - 1),
                                    length=-zscores[t])
                                    # Otherwise, the number of remaining C roster spots stays
    the same
                                else:
                        H.add_edge((t, n1, n2, n3), (t + 1, n1 - prices[t], n2 -
    1, n3),
                                    length=-zscores[t])
    # Add edges from last stage to end,
    # only when number of remaining roster spots is 0 and
    # the number of remaining C roster spots is 0
    for n1 in range(0, BUDGET + 1):
    H.add_edge((n_players, n1, 0, 0), "end", length=0)
    # Solve the shortest path problem using the Bellman-Ford algorithm
    length, nodes, negative_cycle = bf.bellman_ford(H, source=(0, BUDGET, ROSTER_SIZE,
    2),
                                    target="end", weight="length")
    print("Negative cycle? {0}".format(negative_cycle))
    print("Shortest path length: {0}".format(length))
    print("Shortest path: {0}".format(nodes))
```

```
# Print selected players in a more user-friendly format
# Get number of nodes in shortest path
n_nodes = len(nodes)
# Go through each node in the shortest path
for i in range(n_nodes - 2):
# Node in current stage
(t, n1, n2, n3) = nodes[i]
# Node in next stage
(next_t, next_n1, next_n2, next_n3) = nodes[i + 1]
# If n2 isn't the same from one stage to the next, print the player's info
if n2 != next_n2:
    print("Node: {0} Player: {1} Positions: {2}, Price: {3} Z-Score:
```

\{4\}".format(nodes[t], players[t], positions[t], prices[t], zscores[t]))

Negative cycle? False
Shortest path length: -54.39369050175551
Shortest path: $[(0,50,12,2),(1,32,11,2),(2,32,11,2),(3,17,10,2),(4,17$, $10,2),(5,17,10,2),(6,17,10,2),(7,17,10,2),(8,17,10,2),(9,17,10,2)$, $(10,17,10,2),(11,17,10,2),(12,16,9,1),(13,16,9,1),(14,16,9,1),(15,16$, $9,1),(16,16,9,1),(17,16,9,1),(18,15,8,0),(19,15,8,0),(20,15,8,0)$, $(21,15,8,0),(22,15,8,0),(23,15,8,0),(24,15,8,0),(25,12,7,0),(26,12$, $7,0),(27,12,7,0),(28,12,7,0),(29,12,7,0),(30,12,7,0),(31,12,7,0)$, $(32,9,6,0),(33,5,5,0),(34,5,5,0),(35,5,5,0),(36,5,5,0),(37,5,5,0)$, $(38,5,5,0),(39,5,5,0),(40,5,5,0),(41,5,5,0),(42,5,5,0),(43,5,5,0)$, $(44,5,5,0),(45,5,5,0),(46,5,5,0),(47,5,5,0),(48,4,4,0),(49,4,4,0)$, $(50,4,4,0),(51,4,4,0),(52,3,3,0),(53,3,3,0),(54,3,3,0),(55,3,3,0)$, $(56,3,3,0),(57,3,3,0),(58,3,3,0),(59,3,3,0),(60,2,2,0),(61,2,2,0)$, $(62,2,2,0),(63,2,2,0),(64,1,1,0),(65,1,1,0),(66,0,0,0),(67,0,0,0)$, $(68,0,0,0),(69,0,0,0),(70,0,0,0),(71,0,0,0),(72,0,0,0),(73,0,0,0)$, ($74,0,0,0),(75,0,0,0),(76,0,0,0),(77,0,0,0),(78,0,0,0),(79,0,0,0)$, ($80,0,0,0),(81,0,0,0),(82,0,0,0),(83,0,0,0),(84,0,0,0),(85,0,0,0)$, $(86,0,0,0),(87,0,0,0),(88,0,0,0),(89,0,0,0),(90,0,0,0),(91,0,0,0)$, $(92,0,0,0),(93,0,0,0),(94,0,0,0),(95,0,0,0),(96,0,0,0),(97,0,0,0)$, $(98,0,0,0),(99,0,0,0),(100,0,0,0),(101,0,0,0),(102,0,0,0),(103,0,0$, $0),(104,0,0,0),(105,0,0,0),(106,0,0,0),(107,0,0,0),(108,0,0,0),(109$, $0,0,0),(110,0,0,0),(111,0,0,0),(112,0,0,0),(113,0,0,0),(114,0,0,0)$, ($115,0,0,0),(116,0,0,0),(117,0,0,0),(118,0,0,0),(119,0,0,0),(120,0$, $0,0),(121,0,0,0),(122,0,0,0),(123,0,0,0),(124,0,0,0),(125,0,0,0)$, (126, $0,0,0),(127,0,0,0),(128,0,0,0),(129,0,0,0),(130,0,0,0),(131,0$, $0,0),(132,0,0,0),(133,0,0,0),(134,0,0,0),(135,0,0,0),(136,0,0,0)$, ($137,0,0,0),(138,0,0,0),(139,0,0,0),(140,0,0,0),(141,0,0,0),(142,0$, $0,0),(143,0,0,0),(144,0,0,0),(145,0,0,0),(146,0,0,0),(147,0,0,0)$, $(148,0,0,0),(149,0,0,0),(150,0,0,0),(151,0,0,0),(152,0,0,0),(153,0$, $0,0),(154,0,0,0),(155,0,0,0),(156,0,0,0),(157,0,0,0),(158,0,0,0)$, ($159,0,0,0),(160,0,0,0),(161,0,0,0),(162,0,0,0),(163,0,0,0),(164,0$, $0,0),(165,0,0,0),(166,0,0,0),(167,0,0,0),(168,0,0,0),(169,0,0,0)$, $(170,0,0,0),(171,0,0,0),(172,0,0,0),(173,0,0,0),(174,0,0,0),(175,0$, $0,0),(176,0,0,0),(177,0,0,0),(178,0,0,0),(179,0,0,0),(180,0,0,0)$, ($181,0,0,0),(182,0,0,0),(183,0,0,0),(184,0,0,0),(185,0,0,0),(186,0$, $0,0),(187,0,0,0),(188,0,0,0),(189,0,0,0),(190,0,0,0),(191,0,0,0)$, (192, $0,0,0),(193,0,0,0),(194,0,0,0),(195,0,0,0),(196,0,0,0),(197,0$, $0,0),(198,0,0,0),(199,0,0,0),(200,0,0,0),(201,0,0,0),(202,0,0,0)$, (203, $0,0,0),(204,0,0,0),(205,0,0,0),(206,0,0,0),(207,0,0,0),(208,0$, $0,0),(209,0,0,0),(210,0,0,0),(211,0,0,0),(212,0,0,0),(213,0,0,0)$, $(214,0,0,0),(215,0,0,0),(216,0,0,0),(217,0,0,0),(218,0,0,0),(219,0$, $0,0),(220,0,0,0),(221,0,0,0),(222,0,0,0),(223,0,0,0),(224,0,0,0)$, (225, 0, 0, 0), (226, 0, 0, 0), (227, 0, 0, 0), (228, 0, 0, 0), (229, 0, 0, 0), (230, 0, $0,0),(231,0,0,0),(232,0,0,0),(233,0,0,0),(234,0,0,0),(235,0,0,0)$,
$(236,0,0,0),(237,0,0,0),(238,0,0,0),(239,0,0,0),(240,0,0,0),(241,0$, $0,0),(242,0,0,0),(243,0,0,0),(244,0,0,0),(245,0,0,0),(246,0,0,0)$, ($247,0,0,0),(248,0,0,0),(249,0,0,0),(250,0,0,0),(251,0,0,0),(252,0$, $0,0),(253,0,0,0),(254,0,0,0),(255,0,0,0),(256,0,0,0),(257,0,0,0)$, $(258,0,0,0),(259,0,0,0),(260,0,0,0),(261,0,0,0),(262,0,0,0),(263,0$, $0,0),(264,0,0,0),(265,0,0,0),(266,0,0,0),(267,0,0,0),(268,0,0,0)$, $(269,0,0,0),(270,0,0,0),(271,0,0,0),(272,0,0,0),(273,0,0,0),(274,0$, $0,0),(275,0,0,0),(276,0,0,0),(277,0,0,0),(278,0,0,0),(279,0,0,0)$, $(280,0,0,0),(281,0,0,0),(282,0,0,0),(283,0,0,0),(284,0,0,0),(285,0$, $0,0),(286,0,0,0),(287,0,0,0),(288,0,0,0),(289,0,0,0),(290,0,0,0)$, ($291,0,0,0),(292,0,0,0),(293,0,0,0),(294,0,0,0),(295,0,0,0),(296,0$, $0,0),(297,0,0,0),(298,0,0,0),(299,0,0,0),(300,0,0,0),(301,0,0,0)$, $(302,0,0,0),(303,0,0,0),(304,0,0,0),(305,0,0,0),(306,0,0,0),(307,0$, $0,0),(308,0,0,0),(309,0,0,0),(310,0,0,0),(311,0,0,0),(312,0,0,0)$, $(313,0,0,0),(314,0,0,0),(315,0,0,0),(316,0,0,0),(317,0,0,0),(318,0$, $0,0),(319,0,0,0),(320,0,0,0),(321,0,0,0),(322,0,0,0),(323,0,0,0)$, $(324,0,0,0),(325,0,0,0),(326,0,0,0),(327,0,0,0),(328,0,0,0),(329,0$, $0,0),(330,0,0,0),(331,0,0,0),(332,0,0,0),(333,0,0,0),(334,0,0,0)$, $(335,0,0,0),(336,0,0,0),(337,0,0,0),(338,0,0,0),(339,0,0,0),(340,0$, $0,0),(341,0,0,0),(342,0,0,0),(343,0,0,0),(344,0,0,0),(345,0,0,0)$, $(346,0,0,0),(347,0,0,0),(348,0,0,0),(349,0,0,0),(350,0,0,0),(351,0$, $0,0),(352,0,0,0),(353,0,0,0),(354,0,0,0),(355,0,0,0),(356,0,0,0)$, $(357,0,0,0),(358,0,0,0),(359,0,0,0),(360,0,0,0),(361,0,0,0),(362,0$, $0,0),(363,0,0,0),(364,0,0,0),(365,0,0,0),(366,0,0,0),(367,0,0,0)$, $(368,0,0,0),(369,0,0,0),(370,0,0,0),(371,0,0,0),(372,0,0,0),(373,0$, $0,0),(374,0,0,0),(375,0,0,0),(376,0,0,0),(377,0,0,0),(378,0,0,0)$, $(379,0,0,0),(380,0,0,0),(381,0,0,0),(382,0,0,0),(383,0,0,0),(384,0$, $0,0),(385,0,0,0),(386,0,0,0),(387,0,0,0),(388,0,0,0),(389,0,0,0)$, $(390, ~ 0, ~ 0, ~ 0), ~(391, ~ 0, ~ 0, ~ 0), ~(392, ~ 0, ~ 0, ~ 0), ~(393, ~ 0, ~ 0, ~ 0), ~(394, ~ 0, ~ 0, ~ 0), ~(395, ~ 0, ~$ $0,0),(396,0,0,0),(397,0,0,0),(398,0,0,0),(399,0,0,0),(400,0,0,0)$, (401, $0,0,0),(402,0,0,0),(403,0,0,0),(404,0,0,0),(405,0,0,0),(406,0$, $0,0),(407,0,0,0),(408,0,0,0),(409,0,0,0),(410,0,0,0),(411,0,0,0)$, (412, $0,0,0),(413,0,0,0),(414,0,0,0),(415,0,0,0),(416,0,0,0),(417,0$, $0,0),(418,0,0,0),(419,0,0,0),(420,0,0,0),(421,0,0,0),(422,0,0,0)$, ($423,0,0,0),(424,0,0,0),(425,0,0,0),(426,0,0,0),(427,0,0,0),(428,0$, $0,0),(429,0,0,0),(430,0,0,0),(431,0,0,0),(432,0,0,0),(433,0,0,0)$, (434, $0,0,0),(435,0,0,0),(436,0,0,0),(437,0,0,0),(438,0,0,0),(439,0$, $\left.\left.0,0),(440,0,0,0),(441,0,0,0),(442,0,0,0), e^{\prime}\right]^{\prime}\right]$
Node: (0, 50, 12, 2) Player: Stephen Curry Positions: ['PG', 'SG'], Price: 18 Z-Score: 12.681704920021767

Node: (2, 32, 11, 2) Player: Chris Paul Positions: ['PG'], Price: 15 Z-Score: 8.485618602625312

Node: (11, 17, 10, 2) Player: Cole Aldrich Positions: ['C'], Price: 1 Z-Score: 5.689641521236912

Node: (17, 16, 9, 1) Player: Boban Marjanovic Positions: ['C'], Price: 1 Z-Score:
4.542112513644865

Node: (24, 15, 8, 0) Player: Jrue Holiday Positions: ['PG'], Price: 3 Z-Score: 4.0156102748746365

Node: (31, 12, 7, 0) Player: Robert Covington Positions: ['SF', 'PF'], Price: 3 Z-Score: 3.418952349391036
Node: (32, 9, 6, 0) Player: Nikola Mirotic Positions: ['SF', 'PF'], Price: 4 Z-Score: 3.4146385523834835

Node: (47, 5, 5, 0) Player: Jeremy Lamb Positions: ['SG', 'SF'], Price: 1 Z-Score: 2.657902391350232

Node: (51, 4, 4, 0) Player: Cameron Payne Positions: ['PG'], Price: 1 Z-Score:
2.487896082671208

Node: (59, 3, 3, 0 2.3923422473096463

Node: (63, 2, 2, 0) 2.34597794227906

Node: (65, 1, 1, 0
2.2612931039673394

Food for thought

- Can the dynamic programs we solved above help with an actual fantasy basketball draft? Why or why not?
- These DPs only give you the best possible roster. They don't model the draft process; in particular, not all players may be available when it's our turn to select, and the DPs don't use actual auction prices.
- These DPs can help plan during a draft: as a draft progresses, one can update the DP to remove the players that have been already selected, and use the DP to plan which of the remaining players to focus on.

