
SA367 Mathematical Models for Decision Making Spring 2018 Uhan

Lesson 10. Dra�ing a Fantasy Basketball Team

_e problem

You’re preparing for your upcoming fantasy basketball dra�. You wonder: what is the best possible team you can dra�?

You have the following data:

● Projected auction prices for each player in the NBA.

● _e z-score for each player: the sum of the number of standard deviations above the mean in the following 9
categories:

1. points per 36 minutes
2. 3 point ûeld goals made per 36 minutes
3. number of rebounds per 36 minutes
4. number of assists per 36 minutes
5. number of steals per 36 minutes
6. number of blocks per 36 minutes
7. negative of the number of turnovers per 36 minutes
8. ûeld goal percentage
9. free throw percentage

Your roster must have exactly 12 players, and you have a budget of $50. You want to maximize the total z-score of your
team.

Formulate this problem as a dynamic program by giving its shortest/longest path representation.

Setting up the data

● In the same folder as this notebook, there is a ûle called fantasy_basketball_nba2017.csv with the data
described above.

○ _e z-scores were computed using projected stats from Basketball Reference.
○ Projected auction prices were taken from Yahoo! Fantasy Sports, normalized to a budget of $50.

● Let’s take a look using pandas. First, let’s import pandas:

In [2]: # Import pandas
import pandas as pd

● Now we can read the csv ûle into a pandas DataFrame and inspect the ûrst few rows:

In [3]: # Read csv file with data
df = pd.read_csv('fantasy_basketball_nba2017.csv')

Print the first 5 rows of df
df.head()

1

http://www.basketball-reference.com/friv/projections.cgi
https://basketball.fantasysports.yahoo.com/nba/draftanalysis?tab=AD&pos=ALL&sort=DA_AP

Out[3]: PLAYER TEAM POSITIONS ZSCORE PRICE
0 Stephen Curry GS PG,SG 12.681705 18
1 Kawhi Leonard SA SG,SF 8.994709 16
2 Chris Paul LAC PG 8.485619 15
3 Anthony Davis NO PF,C 8.357714 15
4 Kevin Durant GS SF,PF 7.848493 18

● As we can see, the data also contains the team and positions for each player.

● Next, let’s create some lists that correspond to the relevant columns of the dataset.

● Recall that we can grab a column from a DataFrame like this:

df['COLUMN_NAME']

● _e list() function turns any list-like object (such as a column of a pandas DataFrame) into a Python list.

● We can apply the .str.split(",") method to convert a comma-delimited string into a list. _is will be helpful
in parsing the positions that a player can play, since many players can play multiple positions.

In [4]: # Create a list of players
players = list(df["PLAYER"])

Create a list of zscores
zscores = list(df["ZSCORE"])

Create a list of prices
prices = list(df["PRICE"])

Create a list of positions
positions = list(df["POSITIONS"].str.split(","))

● Now we can look at player t and his associated data like this:

In [5]: # Print out information about player 3 - Anthony Davis
print(players[3])
print(zscores[3])
print(prices[3])
print(positions[3])

Anthony Davis
8.357714143615143
15
['PF', 'C']

● Let’s also create a variable that holds the number of players:

In [6]: # Create a variable for the number of players
n_players = len(players)

● Now we can use these lists and variables to construct the graph for the dynamic program.

2

Solving the DP

● _ere are two important constants in our problem: the budget, and the roster size.

● Let’s create variables to hold these constants.

● _is way, we can easily adapt our code to accomodate similar DPs with diòerent budgets and roster sizes.

In [7]: # Create variables to hold constants: budget, roster size
BUDGET = 50
ROSTER_SIZE = 12

● Next, let’s import networkx and bellmanford:

In [8]: # Import networkx and bellman ford
import networkx as nx
import bellmanford as bf

● As usual, we start with an empty graph:

In [9]: # Create empty digraph
G = nx.DiGraph()

● Next, let’s add the nodes:

In [10]: # Add stage-state nodes (t, n1, n2)
for t in range(0, n_players + 1):

for n1 in range(0, BUDGET + 1):
for n2 in range(0, ROSTER_SIZE + 1):

G.add_node((t, n1, n2))

Add the end node
G.add_node("end")

● How many nodes do we have in our graph?

In [11]: # Print number of nodes in digraph
print(G.number_of_nodes())

293710

● Now it’s time to add the edges.

● Let’s start with the edges corresponding to the decision of whether to take a player or not:

In [12]: # Add edges corresponding to the decision of whether to take a player or not
for t in range(0, n_players):

for n1 in range(0, BUDGET + 1):
for n2 in range(0, ROSTER_SIZE + 1):

Don't take the player
G.add_edge((t, n1, n2), (t + 1, n1, n2), length=0)

Take the player if there's enough left in the budget
and there are enough roster spots
if n1 - prices[t] >= 0:

3

if n2 - 1 >= 0:
G.add_edge((t, n1, n2), (t + 1, n1 - prices[t], n2 - 1),

length=-zscores[t])

● Now we can add the edges from the last stage to the end node. Remember to only add edges from the last stage
if the number of remaining roster spots n2 is equal to 0!

In [13]: # Add edges from last stage to end,
only when number of remaining roster spots is 0
for n1 in range(0, BUDGET + 1):

G.add_edge((n_players, n1, 0), "end", length=0)

● How many edges do we have in our graph?

In [14]: # Print number of edges
print(G.number_of_edges())

550545

● Finally, let’s solve the shortest path problem we’ve constructed using the Bellman-Ford algorithm:

In [15]: # Solve the shortest path problem using the Bellman-Ford algorithm
length, nodes, negative_cycle = bf.bellman_ford(G, source=(0, BUDGET, ROSTER_SIZE),
target="end",

weight="length")

print("Negative cycle? {0}".format(negative_cycle))
print("Shortest path length: {0}".format(length))
print("Shortest path: {0}".format(nodes))

Negative cycle? False
Shortest path length: -57.45369330886113
Shortest path: [(0, 50, 12), (1, 32, 11), (2, 32, 11), (3, 32, 11), (4, 32, 11), (5, 32,
11), (6, 32, 11), (7, 32, 11), (8, 32, 11), (9, 23, 10), (10, 15, 9), (11, 15, 9), (12,
14, 8), (13, 14, 8), (14, 14, 8), (15, 14, 8), (16, 14, 8), (17, 14, 8), (18, 13, 7), (19,
13, 7), (20, 13, 7), (21, 13, 7), (22, 13, 7), (23, 13, 7), (24, 12, 6), (25, 9, 5), (26,
9, 5), (27, 9, 5), (28, 5, 4), (29, 5, 4), (30, 5, 4), (31, 5, 4), (32, 5, 4), (33, 5, 4),
(34, 5, 4), (35, 5, 4), (36, 5, 4), (37, 5, 4), (38, 5, 4), (39, 5, 4), (40, 5, 4), (41,
3, 3), (42, 3, 3), (43, 3, 3), (44, 3, 3), (45, 3, 3), (46, 3, 3), (47, 3, 3), (48, 2, 2),
(49, 2, 2), (50, 2, 2), (51, 2, 2), (52, 1, 1), (53, 0, 0), (54, 0, 0), (55, 0, 0), (56,
0, 0), (57, 0, 0), (58, 0, 0), (59, 0, 0), (60, 0, 0), (61, 0, 0), (62, 0, 0), (63, 0, 0),
(64, 0, 0), (65, 0, 0), (66, 0, 0), (67, 0, 0), (68, 0, 0), (69, 0, 0), (70, 0, 0), (71,
0, 0), (72, 0, 0), (73, 0, 0), (74, 0, 0), (75, 0, 0), (76, 0, 0), (77, 0, 0), (78, 0, 0),
(79, 0, 0), (80, 0, 0), (81, 0, 0), (82, 0, 0), (83, 0, 0), (84, 0, 0), (85, 0, 0), (86,
0, 0), (87, 0, 0), (88, 0, 0), (89, 0, 0), (90, 0, 0), (91, 0, 0), (92, 0, 0), (93, 0, 0),
(94, 0, 0), (95, 0, 0), (96, 0, 0), (97, 0, 0), (98, 0, 0), (99, 0, 0), (100, 0, 0), (101,
0, 0), (102, 0, 0), (103, 0, 0), (104, 0, 0), (105, 0, 0), (106, 0, 0), (107, 0, 0), (108,
0, 0), (109, 0, 0), (110, 0, 0), (111, 0, 0), (112, 0, 0), (113, 0, 0), (114, 0, 0), (115,
0, 0), (116, 0, 0), (117, 0, 0), (118, 0, 0), (119, 0, 0), (120, 0, 0), (121, 0, 0), (122,
0, 0), (123, 0, 0), (124, 0, 0), (125, 0, 0), (126, 0, 0), (127, 0, 0), (128, 0, 0), (129,
0, 0), (130, 0, 0), (131, 0, 0), (132, 0, 0), (133, 0, 0), (134, 0, 0), (135, 0, 0), (136,
0, 0), (137, 0, 0), (138, 0, 0), (139, 0, 0), (140, 0, 0), (141, 0, 0), (142, 0, 0), (143,
0, 0), (144, 0, 0), (145, 0, 0), (146, 0, 0), (147, 0, 0), (148, 0, 0), (149, 0, 0), (150,
0, 0), (151, 0, 0), (152, 0, 0), (153, 0, 0), (154, 0, 0), (155, 0, 0), (156, 0, 0), (157,

4

0, 0), (158, 0, 0), (159, 0, 0), (160, 0, 0), (161, 0, 0), (162, 0, 0), (163, 0, 0), (164,
0, 0), (165, 0, 0), (166, 0, 0), (167, 0, 0), (168, 0, 0), (169, 0, 0), (170, 0, 0), (171,
0, 0), (172, 0, 0), (173, 0, 0), (174, 0, 0), (175, 0, 0), (176, 0, 0), (177, 0, 0), (178,
0, 0), (179, 0, 0), (180, 0, 0), (181, 0, 0), (182, 0, 0), (183, 0, 0), (184, 0, 0), (185,
0, 0), (186, 0, 0), (187, 0, 0), (188, 0, 0), (189, 0, 0), (190, 0, 0), (191, 0, 0), (192,
0, 0), (193, 0, 0), (194, 0, 0), (195, 0, 0), (196, 0, 0), (197, 0, 0), (198, 0, 0), (199,
0, 0), (200, 0, 0), (201, 0, 0), (202, 0, 0), (203, 0, 0), (204, 0, 0), (205, 0, 0), (206,
0, 0), (207, 0, 0), (208, 0, 0), (209, 0, 0), (210, 0, 0), (211, 0, 0), (212, 0, 0), (213,
0, 0), (214, 0, 0), (215, 0, 0), (216, 0, 0), (217, 0, 0), (218, 0, 0), (219, 0, 0), (220,
0, 0), (221, 0, 0), (222, 0, 0), (223, 0, 0), (224, 0, 0), (225, 0, 0), (226, 0, 0), (227,
0, 0), (228, 0, 0), (229, 0, 0), (230, 0, 0), (231, 0, 0), (232, 0, 0), (233, 0, 0), (234,
0, 0), (235, 0, 0), (236, 0, 0), (237, 0, 0), (238, 0, 0), (239, 0, 0), (240, 0, 0), (241,
0, 0), (242, 0, 0), (243, 0, 0), (244, 0, 0), (245, 0, 0), (246, 0, 0), (247, 0, 0), (248,
0, 0), (249, 0, 0), (250, 0, 0), (251, 0, 0), (252, 0, 0), (253, 0, 0), (254, 0, 0), (255,
0, 0), (256, 0, 0), (257, 0, 0), (258, 0, 0), (259, 0, 0), (260, 0, 0), (261, 0, 0), (262,
0, 0), (263, 0, 0), (264, 0, 0), (265, 0, 0), (266, 0, 0), (267, 0, 0), (268, 0, 0), (269,
0, 0), (270, 0, 0), (271, 0, 0), (272, 0, 0), (273, 0, 0), (274, 0, 0), (275, 0, 0), (276,
0, 0), (277, 0, 0), (278, 0, 0), (279, 0, 0), (280, 0, 0), (281, 0, 0), (282, 0, 0), (283,
0, 0), (284, 0, 0), (285, 0, 0), (286, 0, 0), (287, 0, 0), (288, 0, 0), (289, 0, 0), (290,
0, 0), (291, 0, 0), (292, 0, 0), (293, 0, 0), (294, 0, 0), (295, 0, 0), (296, 0, 0), (297,
0, 0), (298, 0, 0), (299, 0, 0), (300, 0, 0), (301, 0, 0), (302, 0, 0), (303, 0, 0), (304,
0, 0), (305, 0, 0), (306, 0, 0), (307, 0, 0), (308, 0, 0), (309, 0, 0), (310, 0, 0), (311,
0, 0), (312, 0, 0), (313, 0, 0), (314, 0, 0), (315, 0, 0), (316, 0, 0), (317, 0, 0), (318,
0, 0), (319, 0, 0), (320, 0, 0), (321, 0, 0), (322, 0, 0), (323, 0, 0), (324, 0, 0), (325,
0, 0), (326, 0, 0), (327, 0, 0), (328, 0, 0), (329, 0, 0), (330, 0, 0), (331, 0, 0), (332,
0, 0), (333, 0, 0), (334, 0, 0), (335, 0, 0), (336, 0, 0), (337, 0, 0), (338, 0, 0), (339,
0, 0), (340, 0, 0), (341, 0, 0), (342, 0, 0), (343, 0, 0), (344, 0, 0), (345, 0, 0), (346,
0, 0), (347, 0, 0), (348, 0, 0), (349, 0, 0), (350, 0, 0), (351, 0, 0), (352, 0, 0), (353,
0, 0), (354, 0, 0), (355, 0, 0), (356, 0, 0), (357, 0, 0), (358, 0, 0), (359, 0, 0), (360,
0, 0), (361, 0, 0), (362, 0, 0), (363, 0, 0), (364, 0, 0), (365, 0, 0), (366, 0, 0), (367,
0, 0), (368, 0, 0), (369, 0, 0), (370, 0, 0), (371, 0, 0), (372, 0, 0), (373, 0, 0), (374,
0, 0), (375, 0, 0), (376, 0, 0), (377, 0, 0), (378, 0, 0), (379, 0, 0), (380, 0, 0), (381,
0, 0), (382, 0, 0), (383, 0, 0), (384, 0, 0), (385, 0, 0), (386, 0, 0), (387, 0, 0), (388,
0, 0), (389, 0, 0), (390, 0, 0), (391, 0, 0), (392, 0, 0), (393, 0, 0), (394, 0, 0), (395,
0, 0), (396, 0, 0), (397, 0, 0), (398, 0, 0), (399, 0, 0), (400, 0, 0), (401, 0, 0), (402,
0, 0), (403, 0, 0), (404, 0, 0), (405, 0, 0), (406, 0, 0), (407, 0, 0), (408, 0, 0), (409,
0, 0), (410, 0, 0), (411, 0, 0), (412, 0, 0), (413, 0, 0), (414, 0, 0), (415, 0, 0), (416,
0, 0), (417, 0, 0), (418, 0, 0), (419, 0, 0), (420, 0, 0), (421, 0, 0), (422, 0, 0), (423,
0, 0), (424, 0, 0), (425, 0, 0), (426, 0, 0), (427, 0, 0), (428, 0, 0), (429, 0, 0), (430,
0, 0), (431, 0, 0), (432, 0, 0), (433, 0, 0), (434, 0, 0), (435, 0, 0), (436, 0, 0), (437,
0, 0), (438, 0, 0), (439, 0, 0), (440, 0, 0), (441, 0, 0), (442, 0, 0), 'end']

● It’s easy to see what the maximum possible total z-score is... however, which players should we select to get this
maximum total z-score?

● Instead of reading through the path of 400+ nodes to ûgure out which players to select, let’s write some code to
do this for us.

● We know that we select a player whenever the number of remaining roster spots n2 goes down by 1 from stage to
stage. So...

In [16]: # Print selected players in a more user-friendly format
Get number of nodes in shortest path
n_nodes = len(nodes)

Go through each node in the shortest path
for i in range(n_nodes - 2):

Node in current stage

5

(t, n1, n2) = nodes[i]

Node in next stage
(next_t, next_n1, next_n2) = nodes[i + 1]

If n2 isn't the same from one stage to the next, print the player's info
if n2 != next_n2:

print("Node: {0} Player: {1} Positions: {2}, Price: {3} Z-Score: {4}"
.format(nodes[t], players[t], positions[t], prices[t], zscores[t]))

Node: (0, 50, 12) Player: Stephen Curry Positions: ['PG', 'SG'], Price: 18 Z-Score:
12.681704920021767
Node: (8, 32, 11) Player: Nikola Jokic Positions: ['PF', 'C'], Price: 9 Z-Score:
6.245534045281088
Node: (9, 23, 10) Player: Klay Thompson Positions: ['SG', 'SF'], Price: 8 Z-Score:
5.781494181785728
Node: (11, 15, 9) Player: Cole Aldrich Positions: ['C'], Price: 1 Z-Score:
5.689641521236912
Node: (17, 14, 8) Player: Boban Marjanovic Positions: ['C'], Price: 1 Z-Score:
4.542112513644865
Node: (23, 13, 7) Player: Brandan Wright Positions: ['PF', 'C'], Price: 1 Z-Score:
4.092581777062199
Node: (24, 12, 6) Player: Jrue Holiday Positions: ['PG'], Price: 3 Z-Score:
4.0156102748746365
Node: (27, 9, 5) Player: Dirk Nowitzki Positions: ['PF', 'C'], Price: 4 Z-Score:
3.798143244965448
Node: (40, 5, 4) Player: Kelly Olynyk Positions: ['C'], Price: 2 Z-Score:
2.9855612991757123
Node: (47, 3, 3) Player: Jeremy Lamb Positions: ['SG', 'SF'], Price: 1 Z-Score:
2.657902391350232
Node: (51, 2, 2) Player: Cameron Payne Positions: ['PG'], Price: 1 Z-Score:
2.487896082671208
Node: (52, 1, 1) Player: Mike Muscala Positions: ['PF', 'C'], Price: 1 Z-Score:
2.47551105679133

Incorporating other roster constraints

● Fantasy basketball leagues usually have some roster constraints — in particular, on player positions.

● For example, suppose our roster must have exactly 2 players that can play center (C).

● How can we modify our dynamic program to accomodate this? Write a new dynamic program on paper.

● How do we need to modify the code above to solve the new dynamic program?

● A hint:

○ To check if player t can play center, we can write:

if "C" in positions[t]:
...

○ _is code does what it looks like: it checks if "C" is in the list of positions positions[t] that player t can
play.

6

In [17]: # Create empty digraph
H = nx.DiGraph()

Add stage-state nodes (t, n1, n2, n3)
t = player
n1 = remaining budget
n2 = remaining roster spots
n3 = remaining C roster spots
for t in range(0, n_players):

for n1 in range(0, BUDGET + 1):
for n2 in range(0, ROSTER_SIZE + 1):

for n3 in range(0, 3):
G.add_node((t, n1, n2, n3))

Add the end node
H.add_node("end")

Add edges corresponding to the decision of whether to take a player or not
for t in range(0, n_players):

for n1 in range(0, BUDGET + 1):
for n2 in range(0, ROSTER_SIZE + 1):

for n3 in range(0, 3):

Don't take the player
H.add_edge((t, n1, n2, n3), (t + 1, n1, n2, n3), length=0)

Take the player if there's enough left in the budget
and there are enough roster spots
if n1 - prices[t] >= 0:

if n2 - 1 >= 0:

If the player is a center, we can only add this edge if
there are enough remaining C roster spots
if "C" in positions[t]:

if n3 - 1 >= 0:
H.add_edge((t, n1, n2, n3),

(t + 1, n1 - prices[t], n2 - 1, n3 - 1),
length=-zscores[t])

Otherwise, the number of remaining C roster spots stays
the same

else:
H.add_edge((t, n1, n2, n3), (t + 1, n1 - prices[t], n2 -

1, n3),
length=-zscores[t])

Add edges from last stage to end,
only when number of remaining roster spots is 0 and
the number of remaining C roster spots is 0
for n1 in range(0, BUDGET + 1):

H.add_edge((n_players, n1, 0, 0), "end", length=0)

Solve the shortest path problem using the Bellman-Ford algorithm
length, nodes, negative_cycle = bf.bellman_ford(H, source=(0, BUDGET, ROSTER_SIZE,
2),

target="end", weight="length")

print("Negative cycle? {0}".format(negative_cycle))
print("Shortest path length: {0}".format(length))
print("Shortest path: {0}".format(nodes))

7

Print selected players in a more user-friendly format
Get number of nodes in shortest path
n_nodes = len(nodes)

Go through each node in the shortest path
for i in range(n_nodes - 2):

Node in current stage
(t, n1, n2, n3) = nodes[i]

Node in next stage
(next_t, next_n1, next_n2, next_n3) = nodes[i + 1]

If n2 isn't the same from one stage to the next, print the player's info
if n2 != next_n2:

print("Node: {0} Player: {1} Positions: {2}, Price: {3} Z-Score:
{4}".format(nodes[t], players[t], positions[t], prices[t], zscores[t]))

Negative cycle? False
Shortest path length: -54.39369050175551
Shortest path: [(0, 50, 12, 2), (1, 32, 11, 2), (2, 32, 11, 2), (3, 17, 10, 2), (4, 17,
10, 2), (5, 17, 10, 2), (6, 17, 10, 2), (7, 17, 10, 2), (8, 17, 10, 2), (9, 17, 10, 2),
(10, 17, 10, 2), (11, 17, 10, 2), (12, 16, 9, 1), (13, 16, 9, 1), (14, 16, 9, 1), (15, 16,
9, 1), (16, 16, 9, 1), (17, 16, 9, 1), (18, 15, 8, 0), (19, 15, 8, 0), (20, 15, 8, 0),
(21, 15, 8, 0), (22, 15, 8, 0), (23, 15, 8, 0), (24, 15, 8, 0), (25, 12, 7, 0), (26, 12,
7, 0), (27, 12, 7, 0), (28, 12, 7, 0), (29, 12, 7, 0), (30, 12, 7, 0), (31, 12, 7, 0),
(32, 9, 6, 0), (33, 5, 5, 0), (34, 5, 5, 0), (35, 5, 5, 0), (36, 5, 5, 0), (37, 5, 5, 0),
(38, 5, 5, 0), (39, 5, 5, 0), (40, 5, 5, 0), (41, 5, 5, 0), (42, 5, 5, 0), (43, 5, 5, 0),
(44, 5, 5, 0), (45, 5, 5, 0), (46, 5, 5, 0), (47, 5, 5, 0), (48, 4, 4, 0), (49, 4, 4, 0),
(50, 4, 4, 0), (51, 4, 4, 0), (52, 3, 3, 0), (53, 3, 3, 0), (54, 3, 3, 0), (55, 3, 3, 0),
(56, 3, 3, 0), (57, 3, 3, 0), (58, 3, 3, 0), (59, 3, 3, 0), (60, 2, 2, 0), (61, 2, 2, 0),
(62, 2, 2, 0), (63, 2, 2, 0), (64, 1, 1, 0), (65, 1, 1, 0), (66, 0, 0, 0), (67, 0, 0, 0),
(68, 0, 0, 0), (69, 0, 0, 0), (70, 0, 0, 0), (71, 0, 0, 0), (72, 0, 0, 0), (73, 0, 0, 0),
(74, 0, 0, 0), (75, 0, 0, 0), (76, 0, 0, 0), (77, 0, 0, 0), (78, 0, 0, 0), (79, 0, 0, 0),
(80, 0, 0, 0), (81, 0, 0, 0), (82, 0, 0, 0), (83, 0, 0, 0), (84, 0, 0, 0), (85, 0, 0, 0),
(86, 0, 0, 0), (87, 0, 0, 0), (88, 0, 0, 0), (89, 0, 0, 0), (90, 0, 0, 0), (91, 0, 0, 0),
(92, 0, 0, 0), (93, 0, 0, 0), (94, 0, 0, 0), (95, 0, 0, 0), (96, 0, 0, 0), (97, 0, 0, 0),
(98, 0, 0, 0), (99, 0, 0, 0), (100, 0, 0, 0), (101, 0, 0, 0), (102, 0, 0, 0), (103, 0, 0,
0), (104, 0, 0, 0), (105, 0, 0, 0), (106, 0, 0, 0), (107, 0, 0, 0), (108, 0, 0, 0), (109,
0, 0, 0), (110, 0, 0, 0), (111, 0, 0, 0), (112, 0, 0, 0), (113, 0, 0, 0), (114, 0, 0, 0),
(115, 0, 0, 0), (116, 0, 0, 0), (117, 0, 0, 0), (118, 0, 0, 0), (119, 0, 0, 0), (120, 0,
0, 0), (121, 0, 0, 0), (122, 0, 0, 0), (123, 0, 0, 0), (124, 0, 0, 0), (125, 0, 0, 0),
(126, 0, 0, 0), (127, 0, 0, 0), (128, 0, 0, 0), (129, 0, 0, 0), (130, 0, 0, 0), (131, 0,
0, 0), (132, 0, 0, 0), (133, 0, 0, 0), (134, 0, 0, 0), (135, 0, 0, 0), (136, 0, 0, 0),
(137, 0, 0, 0), (138, 0, 0, 0), (139, 0, 0, 0), (140, 0, 0, 0), (141, 0, 0, 0), (142, 0,
0, 0), (143, 0, 0, 0), (144, 0, 0, 0), (145, 0, 0, 0), (146, 0, 0, 0), (147, 0, 0, 0),
(148, 0, 0, 0), (149, 0, 0, 0), (150, 0, 0, 0), (151, 0, 0, 0), (152, 0, 0, 0), (153, 0,
0, 0), (154, 0, 0, 0), (155, 0, 0, 0), (156, 0, 0, 0), (157, 0, 0, 0), (158, 0, 0, 0),
(159, 0, 0, 0), (160, 0, 0, 0), (161, 0, 0, 0), (162, 0, 0, 0), (163, 0, 0, 0), (164, 0,
0, 0), (165, 0, 0, 0), (166, 0, 0, 0), (167, 0, 0, 0), (168, 0, 0, 0), (169, 0, 0, 0),
(170, 0, 0, 0), (171, 0, 0, 0), (172, 0, 0, 0), (173, 0, 0, 0), (174, 0, 0, 0), (175, 0,
0, 0), (176, 0, 0, 0), (177, 0, 0, 0), (178, 0, 0, 0), (179, 0, 0, 0), (180, 0, 0, 0),
(181, 0, 0, 0), (182, 0, 0, 0), (183, 0, 0, 0), (184, 0, 0, 0), (185, 0, 0, 0), (186, 0,
0, 0), (187, 0, 0, 0), (188, 0, 0, 0), (189, 0, 0, 0), (190, 0, 0, 0), (191, 0, 0, 0),
(192, 0, 0, 0), (193, 0, 0, 0), (194, 0, 0, 0), (195, 0, 0, 0), (196, 0, 0, 0), (197, 0,
0, 0), (198, 0, 0, 0), (199, 0, 0, 0), (200, 0, 0, 0), (201, 0, 0, 0), (202, 0, 0, 0),
(203, 0, 0, 0), (204, 0, 0, 0), (205, 0, 0, 0), (206, 0, 0, 0), (207, 0, 0, 0), (208, 0,
0, 0), (209, 0, 0, 0), (210, 0, 0, 0), (211, 0, 0, 0), (212, 0, 0, 0), (213, 0, 0, 0),
(214, 0, 0, 0), (215, 0, 0, 0), (216, 0, 0, 0), (217, 0, 0, 0), (218, 0, 0, 0), (219, 0,
0, 0), (220, 0, 0, 0), (221, 0, 0, 0), (222, 0, 0, 0), (223, 0, 0, 0), (224, 0, 0, 0),
(225, 0, 0, 0), (226, 0, 0, 0), (227, 0, 0, 0), (228, 0, 0, 0), (229, 0, 0, 0), (230, 0,
0, 0), (231, 0, 0, 0), (232, 0, 0, 0), (233, 0, 0, 0), (234, 0, 0, 0), (235, 0, 0, 0),

8

(236, 0, 0, 0), (237, 0, 0, 0), (238, 0, 0, 0), (239, 0, 0, 0), (240, 0, 0, 0), (241, 0,
0, 0), (242, 0, 0, 0), (243, 0, 0, 0), (244, 0, 0, 0), (245, 0, 0, 0), (246, 0, 0, 0),
(247, 0, 0, 0), (248, 0, 0, 0), (249, 0, 0, 0), (250, 0, 0, 0), (251, 0, 0, 0), (252, 0,
0, 0), (253, 0, 0, 0), (254, 0, 0, 0), (255, 0, 0, 0), (256, 0, 0, 0), (257, 0, 0, 0),
(258, 0, 0, 0), (259, 0, 0, 0), (260, 0, 0, 0), (261, 0, 0, 0), (262, 0, 0, 0), (263, 0,
0, 0), (264, 0, 0, 0), (265, 0, 0, 0), (266, 0, 0, 0), (267, 0, 0, 0), (268, 0, 0, 0),
(269, 0, 0, 0), (270, 0, 0, 0), (271, 0, 0, 0), (272, 0, 0, 0), (273, 0, 0, 0), (274, 0,
0, 0), (275, 0, 0, 0), (276, 0, 0, 0), (277, 0, 0, 0), (278, 0, 0, 0), (279, 0, 0, 0),
(280, 0, 0, 0), (281, 0, 0, 0), (282, 0, 0, 0), (283, 0, 0, 0), (284, 0, 0, 0), (285, 0,
0, 0), (286, 0, 0, 0), (287, 0, 0, 0), (288, 0, 0, 0), (289, 0, 0, 0), (290, 0, 0, 0),
(291, 0, 0, 0), (292, 0, 0, 0), (293, 0, 0, 0), (294, 0, 0, 0), (295, 0, 0, 0), (296, 0,
0, 0), (297, 0, 0, 0), (298, 0, 0, 0), (299, 0, 0, 0), (300, 0, 0, 0), (301, 0, 0, 0),
(302, 0, 0, 0), (303, 0, 0, 0), (304, 0, 0, 0), (305, 0, 0, 0), (306, 0, 0, 0), (307, 0,
0, 0), (308, 0, 0, 0), (309, 0, 0, 0), (310, 0, 0, 0), (311, 0, 0, 0), (312, 0, 0, 0),
(313, 0, 0, 0), (314, 0, 0, 0), (315, 0, 0, 0), (316, 0, 0, 0), (317, 0, 0, 0), (318, 0,
0, 0), (319, 0, 0, 0), (320, 0, 0, 0), (321, 0, 0, 0), (322, 0, 0, 0), (323, 0, 0, 0),
(324, 0, 0, 0), (325, 0, 0, 0), (326, 0, 0, 0), (327, 0, 0, 0), (328, 0, 0, 0), (329, 0,
0, 0), (330, 0, 0, 0), (331, 0, 0, 0), (332, 0, 0, 0), (333, 0, 0, 0), (334, 0, 0, 0),
(335, 0, 0, 0), (336, 0, 0, 0), (337, 0, 0, 0), (338, 0, 0, 0), (339, 0, 0, 0), (340, 0,
0, 0), (341, 0, 0, 0), (342, 0, 0, 0), (343, 0, 0, 0), (344, 0, 0, 0), (345, 0, 0, 0),
(346, 0, 0, 0), (347, 0, 0, 0), (348, 0, 0, 0), (349, 0, 0, 0), (350, 0, 0, 0), (351, 0,
0, 0), (352, 0, 0, 0), (353, 0, 0, 0), (354, 0, 0, 0), (355, 0, 0, 0), (356, 0, 0, 0),
(357, 0, 0, 0), (358, 0, 0, 0), (359, 0, 0, 0), (360, 0, 0, 0), (361, 0, 0, 0), (362, 0,
0, 0), (363, 0, 0, 0), (364, 0, 0, 0), (365, 0, 0, 0), (366, 0, 0, 0), (367, 0, 0, 0),
(368, 0, 0, 0), (369, 0, 0, 0), (370, 0, 0, 0), (371, 0, 0, 0), (372, 0, 0, 0), (373, 0,
0, 0), (374, 0, 0, 0), (375, 0, 0, 0), (376, 0, 0, 0), (377, 0, 0, 0), (378, 0, 0, 0),
(379, 0, 0, 0), (380, 0, 0, 0), (381, 0, 0, 0), (382, 0, 0, 0), (383, 0, 0, 0), (384, 0,
0, 0), (385, 0, 0, 0), (386, 0, 0, 0), (387, 0, 0, 0), (388, 0, 0, 0), (389, 0, 0, 0),
(390, 0, 0, 0), (391, 0, 0, 0), (392, 0, 0, 0), (393, 0, 0, 0), (394, 0, 0, 0), (395, 0,
0, 0), (396, 0, 0, 0), (397, 0, 0, 0), (398, 0, 0, 0), (399, 0, 0, 0), (400, 0, 0, 0),
(401, 0, 0, 0), (402, 0, 0, 0), (403, 0, 0, 0), (404, 0, 0, 0), (405, 0, 0, 0), (406, 0,
0, 0), (407, 0, 0, 0), (408, 0, 0, 0), (409, 0, 0, 0), (410, 0, 0, 0), (411, 0, 0, 0),
(412, 0, 0, 0), (413, 0, 0, 0), (414, 0, 0, 0), (415, 0, 0, 0), (416, 0, 0, 0), (417, 0,
0, 0), (418, 0, 0, 0), (419, 0, 0, 0), (420, 0, 0, 0), (421, 0, 0, 0), (422, 0, 0, 0),
(423, 0, 0, 0), (424, 0, 0, 0), (425, 0, 0, 0), (426, 0, 0, 0), (427, 0, 0, 0), (428, 0,
0, 0), (429, 0, 0, 0), (430, 0, 0, 0), (431, 0, 0, 0), (432, 0, 0, 0), (433, 0, 0, 0),
(434, 0, 0, 0), (435, 0, 0, 0), (436, 0, 0, 0), (437, 0, 0, 0), (438, 0, 0, 0), (439, 0,
0, 0), (440, 0, 0, 0), (441, 0, 0, 0), (442, 0, 0, 0), 'end']
Node: (0, 50, 12, 2) Player: Stephen Curry Positions: ['PG', 'SG'], Price: 18 Z-Score:
12.681704920021767
Node: (2, 32, 11, 2) Player: Chris Paul Positions: ['PG'], Price: 15 Z-Score:
8.485618602625312
Node: (11, 17, 10, 2) Player: Cole Aldrich Positions: ['C'], Price: 1 Z-Score:
5.689641521236912
Node: (17, 16, 9, 1) Player: Boban Marjanovic Positions: ['C'], Price: 1 Z-Score:
4.542112513644865
Node: (24, 15, 8, 0) Player: Jrue Holiday Positions: ['PG'], Price: 3 Z-Score:
4.0156102748746365
Node: (31, 12, 7, 0) Player: Robert Covington Positions: ['SF', 'PF'], Price: 3
Z-Score: 3.418952349391036
Node: (32, 9, 6, 0) Player: Nikola Mirotic Positions: ['SF', 'PF'], Price: 4 Z-Score:
3.4146385523834835
Node: (47, 5, 5, 0) Player: Jeremy Lamb Positions: ['SG', 'SF'], Price: 1 Z-Score:
2.657902391350232
Node: (51, 4, 4, 0) Player: Cameron Payne Positions: ['PG'], Price: 1 Z-Score:
2.487896082671208
Node: (59, 3, 3, 0) Player: Toney Douglas Positions: ['PG', 'SG'], Price: 1 Z-Score:
2.3923422473096463
Node: (63, 2, 2, 0) Player: Alan Williams Positions: ['PF'], Price: 1 Z-Score:
2.34597794227906
Node: (65, 1, 1, 0) Player: C.J. Miles Positions: ['SG', 'SF'], Price: 1 Z-Score:
2.2612931039673394

9

Food for thought

● Can the dynamic programs we solved above help with an actual fantasy basketball dra�? Why or why not?

● _ese DPs only give you the best possible roster. _ey don’t model the dra� process; in particular, not all players
may be available when it’s our turn to select, and the DPs don’t use actual auction prices.

● _ese DPs can help plan during a dra�: as a dra� progresses, one can update the DP to remove the players that
have been already selected, and use the DP to plan which of the remaining players to focus on.

10

	The problem
	Setting up the data
	Solving the DP
	Incorporating other roster constraints
	Food for thought

